射频功率放大器是无线通信系统中非常重要的组件,但他们本身是非线性的,因而会导致频谱增生现象而干扰到邻近通道,而且可能违反法令强制规定的带外放射标准。这个特性甚至会造成带内失真,使得通信系统的误码率增加、数据传输速率降低。
在峰值平均功率比下,新的 OFDM 传输格式会有更多偶发的峰值功率,使得 PA 不易被分割。这将降低频谱屏蔽相符性,并扩大整个波形的 EVM 及增加 BER。为了解决这个问题,设计工程师通常会刻意降低 PA 的操作功率。很可惜的,这是非常没有效率的方法,因为 PA 降低 10%的操作功率,会损失掉 90%的 DC 功率。
现今大部分的 RF PA 皆支持多种模式、频率范围及调制模式,使得测试项目变得更多。射频功率放大器数以千计的测试项目已不稀奇。波峰因子消减、数字预失真及包络跟踪等新技术的运用,有助于将 PA 效能及功率效率优化,但这些技术只会使得测试更加复杂,而且大幅延长设计及测试时间。增加 RF PA 的带宽,将导致 DPD 测量所需的带宽增加 5 倍(可能超过 1 GHz),造成测试复杂性进一步升高。
依趋势来看,为了增加效率,RF PA 组件及前端模块(FEM)将更紧密整合,而单一 FEM 则将支持更广泛的频段及调制模式。将包络跟踪电源供应器或调制器整合入 FEM,可有效地减少移动设备内部的整体空间需求。射频功率放大器为了支持更大的操作频率范围而大量增加滤波器/双工器插槽,会使得移动设备的复杂度和测试项目的数量节节攀升。